人工智能独角兽探智立方自动化规则生成系统,半小时内设计上百条金融风控规则
2020-06-19 17:14:57AI云资讯1384
如今,人工智能在金融风控方面起到了越来越重要的作用。在许多金融公司的风控介绍中,都说自己用到了人工智能,机器学习,深度学习模型等技术。但是在生产应用中,人工智能模型,或者说机器学习模型存在着不可解释的问题,在公司内部,使用最广的还是规则引擎,目前来说还是没有一个可以完全脱离规则的金融公司。而人工智能新兴独角兽企业探智立方(iQubic)研发的DarwinML自动化规则生成系统,有效的解决了金融从业人员设计规则的现实问题。
研究规则的自动生成具有其现实的意义,不单单是规则对于人来说易于理解,没有机器学习的门槛那么高,同时规则对于业务人员来说其可控性也是最好的。
金融公司的风控后台的规则模块需要支持单条规则,组合规则以及评分规则等基本规则功能。单条和组合规则都是业务人员对数据理解后,抽象出来的数据组合逻辑,在设计过程中,需要对数据进行详尽的分析,测试,模拟等操作。人工规则的生成要经历比较长时间的数据分析过程,同时需要手动的部署到风控引擎上。在这样的业务背景下,探智立方DarwinML自动化规则生成系统应运而生,DarwinML自动化规则生成有效的解决了业务人员设计规则的现实问题:
1.数据自动分析组合
2.基于数据的可定量的解释
3.连接规则引擎,一键部署
DarwinML自动化规则生成系统可以自动对数据进行分析,拆解多个树类模型算法得到其执行路径并转化为可运行的规则,基于DarwinML设计的优化损失函数,对规则的生产进行迭代优化,得到最优的规则集合。很大程度上缩短了人工规则的设计过程,提升了规则设计的效率和精确度。

金融小贷用户在使用DarwinML自动化规则生成系统后,每期数据规则迭代在30分钟左右就可以生成100条以上独立有价值的规则。规则集的平均长度可以控制在5个变量以内。每条规则在数据样本比例上的提升能保持3倍以上,并且自动生成的模型可以帮助业务人员跳出思维的盲点,找到以前并不曾注意的风控点。
现阶段,加速实现金融风险技防能力已成为业界迫切的需求。今年4月,中国银保监会副主席黄洪于国务院新闻办公室上表示:疫情冲击下不良贷款有所增加,贷款逾期和违约情况增多。可以预见,疫情会倒逼金融机构进行更审慎的信贷政策,这对金融机构的科技能力、风控都提出更高要求。
“国内绝大多数企业都没有强大的AI开发团队,DarwinML可以把AI的整个流程工具化,无需高度专业的AI建模知识就可以开展工作。”探智立方解决方案总监徐宁说道:“对于传统公司而言,招募 AI 建模的开发者难度很大。但使用DarwinML就可以很大程度上省去这一过程。”
相关文章
- 智汇瓯江 智引未来:2025中国人工智能数字创新大会在温州成功举办
- 苹果人工智能服务器芯片Baltra或将用于执行人工智能推理任务
- 人工智能数据处理和质量测评中心全栈服务体系正式发布
- 中国开发区协会人工智能产业专业委员会在京成立
- 中国信通院政策与经济研究所李强治:我国人工智能治理迈入务实新阶段,场景与工具同步落地
- 中国信通院产业与规划研究所张桢:人工智能与城市全域数字化转型融合,正成为推动城市高质量发展的核心引擎
- 中国信通院产业与规划研究所徐志发:人工智能驱动数字消费深度变革,“十五五”时期将进入壮大发展的关键阶段
- 中国信通院云计算与大数据研究所栗蔚:智能算力重塑计算和网络架构,普惠化服务人工智能
- 中国信通院信息化与工业化融合研究所刘默:人工智能技术创新赋能制造业智能化迈入新阶段
- 中国信通院人工智能研究所魏凯:人工智能正从工具升级为伙伴,全面赋能高质量发展
- 中国心理科技园开园暨中国心理人工智能算力中心在京成立 心理产业迈入2.0时代:“心理AI产教融合生态”
- 蘑菇云荣膺教育强国论坛2025年度科技创新教育品牌 以创新产品赋能人工智能通识教育
- 英伟达在AI图形处理器上部署训练OpenAI的GPT-5.2,为人工智能产业提速
- 2025 全国人工智能应用场景创新挑战赛AI Agent全球专项赛线下半决赛新闻发布会在深圳召开
- 美图公司RoboNeo入选2025人工智能年度榜单
- 贵港移动公司共建人工智能联合实验室,推动产学研融合与产业数字化









