深海海底地质灾害和人工智能识别研究取得新进展
2020-11-11 13:39:15爱云资讯1172
(一) 尽管前人通过水槽实验和露头测量已经建立了浊流底形的理论演化模型,但是,水道-朵叶体转换带(the channel–lobe transition zones,简称CLTZ)内的浊流底形演化很少有文献记载,对其了解也非常少。以南海琼东南盆地高分辨率三维人工地震资料为基础,采用地震沉积学与海底地貌学结合的分析方法,刻画了水深1080-1260米、40公里长的现代海底浊流水系;推进了微地貌尺度的深水浊流底形观测;在CLTZs内,更新了弗洛德数(Fr)整体下降趋势下,局部超临界流动和水力跃变的演化模型。
华光水道-朵叶体转换带
此项研究在线发表于《Geomorphology》(Wang, W., Wang, D.*, Sun, J., Shao, D., Lu, Y., Chen, Y., Wu, S., 2020. Evolution of deepwater turbidite bedforms in the Huaguang channel–lobe transition zone revealed by 3D seismic data in the Qiongdongnan Basin, South China Sea. Geomorphology, 370: 107412. DOI:10.1016/j.geomorph.2020.107412)
(二) 从沉积环境、底形形态、沉积结构、形成机理和数值模拟等方面介绍了周期阶坎(Cyclic steps)的研究进展,探讨了不同探测方法的分辨率问题,给出了周期阶坎研究的突破方向。在水深大于500米的区域,将自主式水下航行器(AUV)和船测多波束、AUV和船测浅地层剖面、人工地震数据结合,并通过载人潜水器(HOV)获取原位数据,完善周期阶坎的三维精细结构。
对比不同探测设备之间的差异性
此项研究发表于《地球科学进展》(王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战. 地球科学进展, 2020,35(9):890-901. DOI:10.11867/j.issn.1001-8166.2020.072)
(三) 随着深拖、AUV、ROV、HOV等技术在工程调查中的广泛应用,学术与工业界已获得了近海底的、大数据量的、高精度的海底地形数据。海洋科学的精细研究、海洋工程的施工效率,要求高效、准确的海底地貌分析结果,对传统的地貌分析方法提出了新要求。利用人工智能的方法,对海底地形数据进行分析与处理,自动识别海底地貌单元的边界,可以大大提高海底地貌分析的工作效率和准确度。
相关文章
- 人工智能搜索引擎Perplexity的AI语音助手已登陆iOS平台
- 学而思素养携手中国青少年宫协会 开启人工智能科普公益行
- 中国软件行业协会NCT编程考级2025年4月考圆满收官,新增人工智能教育测评体系
- 更能算、更省钱、更懂化工的国产人工智能来了!
- 2025“人工智能+”产业发展大会:开启智能产业新时代
- 云南联通科技创新暨人工智能合作发展大会在昆启幕:科技赋能边疆,智启数字云南新篇章
- 人民出行受邀见证中国-东盟人工智能创新合作中心签约 共启广西智能产业新篇章
- AI赋能,数智创新,慧博云通闪耀2025日本人工智能展览会
- 维基百科将发布专用于训练人工智能模型的数据集,以抵御网络爬虫抓取
- 培生发布智能课程生成器:创新人工智能驱动教师备课方式变革
- OpenAI发布全新人工智能模型o3和o4-mini,首次实现图像思考
- 深度迈进人工智能新纪元,标普云正式更名标普智元
- Meta AI宣布即将使用欧盟用户数据训练人工智能模型
- 英伟达宣布在台积电亚利桑那州工厂投产Blackwell人工智能芯片
- 九章云极DataCanvas入选2025全国企业“人工智能+”行动创新案例TOP100
- 云知声受邀参加2025中国数字经济产业发展大会,携手多方共筑苏州人工智能战略生态