人工智能走向深度学习 构建强大的计算力是重要指标
2020-04-16 09:38:45AI云资讯961
据介绍,人工智能比较大的挑战之一是识别度不高、准确度不高,提高准确度就要提高模型的规模和精细度,提高线下训练的频次,这需要更强的计算力。当前随着人工智能算法模型的复杂度和精度愈来愈高,互联网和物联网产生的数据呈几何倍数增长,在数据量和算法模型的双层叠加下,人工智能对计算的需求越来越大。


“2016年3月,谷歌人工智能阿尔法围棋(AlphaGo)战胜韩国棋手李世石时,人们慨叹人工智能的强大,而其背后巨大的‘付出’却鲜为人知——数千台服务器、上千块CPU、高性能显卡以及对弈一场棋所消耗的惊人电量。”远望智库人工智能事业部部长、图灵机器人首席战略官谭茗洲在接受记者采访时表示。
“相比云计算和大数据等应用,人工智能对计算力的需求几乎无止境。”中国工程院院士、浪潮集团首席科学家王恩东也指出。
据介绍,人工智能比较大的挑战之一是识别度不高、准确度不高,提高准确度就要提高模型的规模和精细度,提高线下训练的频次,这需要更强的计算力。
当前随着人工智能算法模型的复杂度和精度愈来愈高,互联网和物联网产生的数据呈几何倍数增长,在数据量和算法模型的双层叠加下,人工智能对计算的需求越来越大。
从中国信息通信研究院王蕴韬在通信世界网发表的文章了解,人工智能基础设施建设重要一方面是继续夯实通用算力基础。当前算力供给已经无法满足智能化社会构建,根据OpenAI统计,从2012年至2019年,随着深度学习“大深多”模型的演进,模型计算所需计算量已经增长30万倍,无论是计算机视觉还是自然语言处理,由于预训练模型的广泛使用,模型所需算力直接呈现阶跃式发展。
据斯坦福《AIINDEX2019》报告,2012年之前,人工智能的计算速度紧追摩尔定律,算力需求每两年翻一番,2012年以后,算力需求的翻番时长则直接缩短为3、4个月。面对已经每过20年才能翻一番的通用计算供给能力,算力捉襟见肘已经不言而喻。
无疑,人工智能走向深度学习,计算力已成为评价人工智能研究成本的重要指标。
未来如何解决算力难题,据报道,目前计算存储一体化正在助力、推动算法升级,成为下一代AI系统的入口。存内计算提供的大规模更高效的算力,使得AI算法设计有更充分的想象力,不再受到算力约束。从而将硬件上的先进性,升级为系统、算法的领先优势,最终加速孵化新业务。
而除了计算存储一体化的趋势,量子计算或是解决AI所需巨额算力的另一途径。目前量子计算机的发展已经超越传统计算机的摩尔定律,以传统计算机的计算能力为基本参考,量子计算机的算力正迅速发展。
相关文章
- 优刻得参加联合国工发组织全球工业与制造业人工智能联盟大会
- 打造张江人工智能创新小镇,全国首个人工智能创新应用先导区再添发展新引擎
- 中国移动董事长杨杰:聚力“人工智能+”行动,赋能新型工业化发展
- 2025年人工智能技术赋能网络安全应用测试 深信服成唯一包揽三项第一厂商
- 践行国家“人工智能+”战略,容联云助力某消金“客服智能体”落地
- 相聚上海,共赴智能之约!昇腾AI人工智能产业峰会三大亮点抢先看
- 2025青岛海洋人工智能创新应用大赛 高校行活动圆满收官!
- 老板电器入选首批浙江省人工智能赋能制造业典型案例,树立AI转型可复制标杆
- 人机共生 · 智启未来——2025高交会亚洲人工智能与机器人产业链展主题发布
- 工业富联AI低代码平台入选浙江省人工智能赋能制造业典型案例
- Canva可画入选 2025年服贸会“人工智能+” 示范案例, 展现 AI 赋能服务贸易新实践
- 甲骨文与OpenAI达成3000亿美元“星际之门”项目协议 或将重塑云计算与人工智能未来
- 重磅发布 | “人工智能数据沙盒伙伴计划”亮相2025服贸会
- 中国联通全面承接国家人工智能应用中试基地(医疗领域)
- GTI发布全球“人工智能+”产学研生态合作倡议:深化融合创新,共促AI普惠
- 深度契合人工智能+与智能网联汽车主题,懂车帝智博会系列活动收官