深海海底地质灾害和人工智能识别研究取得新进展
2020-11-11 13:39:15AI云资讯1428
(一) 尽管前人通过水槽实验和露头测量已经建立了浊流底形的理论演化模型,但是,水道-朵叶体转换带(the channel–lobe transition zones,简称CLTZ)内的浊流底形演化很少有文献记载,对其了解也非常少。以南海琼东南盆地高分辨率三维人工地震资料为基础,采用地震沉积学与海底地貌学结合的分析方法,刻画了水深1080-1260米、40公里长的现代海底浊流水系;推进了微地貌尺度的深水浊流底形观测;在CLTZs内,更新了弗洛德数(Fr)整体下降趋势下,局部超临界流动和水力跃变的演化模型。
华光水道-朵叶体转换带
此项研究在线发表于《Geomorphology》(Wang, W., Wang, D.*, Sun, J., Shao, D., Lu, Y., Chen, Y., Wu, S., 2020. Evolution of deepwater turbidite bedforms in the Huaguang channel–lobe transition zone revealed by 3D seismic data in the Qiongdongnan Basin, South China Sea. Geomorphology, 370: 107412. DOI:10.1016/j.geomorph.2020.107412)
(二) 从沉积环境、底形形态、沉积结构、形成机理和数值模拟等方面介绍了周期阶坎(Cyclic steps)的研究进展,探讨了不同探测方法的分辨率问题,给出了周期阶坎研究的突破方向。在水深大于500米的区域,将自主式水下航行器(AUV)和船测多波束、AUV和船测浅地层剖面、人工地震数据结合,并通过载人潜水器(HOV)获取原位数据,完善周期阶坎的三维精细结构。
对比不同探测设备之间的差异性
此项研究发表于《地球科学进展》(王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战. 地球科学进展, 2020,35(9):890-901. DOI:10.11867/j.issn.1001-8166.2020.072)
(三) 随着深拖、AUV、ROV、HOV等技术在工程调查中的广泛应用,学术与工业界已获得了近海底的、大数据量的、高精度的海底地形数据。海洋科学的精细研究、海洋工程的施工效率,要求高效、准确的海底地貌分析结果,对传统的地貌分析方法提出了新要求。利用人工智能的方法,对海底地形数据进行分析与处理,自动识别海底地貌单元的边界,可以大大提高海底地貌分析的工作效率和准确度。
相关文章
- 智汇瓯江 智引未来:2025中国人工智能数字创新大会在温州成功举办
- 苹果人工智能服务器芯片Baltra或将用于执行人工智能推理任务
- 人工智能数据处理和质量测评中心全栈服务体系正式发布
- 中国开发区协会人工智能产业专业委员会在京成立
- 中国信通院政策与经济研究所李强治:我国人工智能治理迈入务实新阶段,场景与工具同步落地
- 中国信通院产业与规划研究所张桢:人工智能与城市全域数字化转型融合,正成为推动城市高质量发展的核心引擎
- 中国信通院产业与规划研究所徐志发:人工智能驱动数字消费深度变革,“十五五”时期将进入壮大发展的关键阶段
- 中国信通院云计算与大数据研究所栗蔚:智能算力重塑计算和网络架构,普惠化服务人工智能
- 中国信通院信息化与工业化融合研究所刘默:人工智能技术创新赋能制造业智能化迈入新阶段
- 中国信通院人工智能研究所魏凯:人工智能正从工具升级为伙伴,全面赋能高质量发展
- 中国心理科技园开园暨中国心理人工智能算力中心在京成立 心理产业迈入2.0时代:“心理AI产教融合生态”
- 蘑菇云荣膺教育强国论坛2025年度科技创新教育品牌 以创新产品赋能人工智能通识教育
- 英伟达在AI图形处理器上部署训练OpenAI的GPT-5.2,为人工智能产业提速
- 2025 全国人工智能应用场景创新挑战赛AI Agent全球专项赛线下半决赛新闻发布会在深圳召开
- 美图公司RoboNeo入选2025人工智能年度榜单
- 贵港移动公司共建人工智能联合实验室,推动产学研融合与产业数字化









