NASA利用人工智能对其太阳动力学天文台进行“视力测试”
2021-07-24 09:53:28AI云资讯713
据外媒报道,美国宇航局(NASA)的太阳动力学天文台(SDO)有一些巧妙的方法来避免受到太阳的影响,因为该航天局收集了关于我们最近的恒星的重要信息。太阳动力学天文台已经工作了十多年,揭开了关于太阳中强大力量的前所未有的细节,但新的人工智能技术正在确保其“太阳视力”是正常的。
SDO由两个主要的成像仪器组成,即太阳地震和磁成像仪(HMI)和大气成像组件(AIA)。后者对太阳的表面进行持续的“注视”,每12秒捕捉一次10个波长的紫外光的镜头。
AIA可能比人的眼睛更有“弹性”--盯着太阳看对人们的眼睛造成的损害,即所谓的日光性视网膜病变,可能在两分钟内发生--但随着时间的推移,它仍然受到巨大能量输出的影响。"随着时间的推移,太阳望远镜的敏感镜片和传感器开始退化,"NASA解释说。"为了确保这种仪器发回的数据仍然是准确的,科学家们定期进行重新校准,以确保他们了解仪器是如何变化的。"
到目前为止,SDO的这一目测依靠的是探空火箭。这些火箭的设计寿命很短,它们飞出地球的大部分大气层--这有助于保护我们免受大部分紫外线的伤害--然后测量那里的水平。然后与AIA的测量结果进行比较,然后对数据进行调整以适应仪器的退化。上图左边是AIA的原始数据,右边是使用探空火箭校准的处理版本。
NASA解释说,问题是不可能一直发送探空火箭。该机构解释说:“这意味着在每次探空火箭校准之间会有停机时间,校准会有轻微偏差。同时,展望未来,深空任务也将需要观察有潜力的恒星,但将不能使用探空火箭进行校准。”
周五的一篇新论文中详细介绍了解决办法,那就是机器学习。通过在探空火箭校准飞行的现有图像上训练人工智能算法,并告诉它什么是正确的校准量,该系统可以学习应用多少。
在上面的图片中,上面一行显示的是AIA在开始观测以来的几年中捕获的原始数据。下行显示的是经过新的机器学习算法处理后的数据。
“由于AIA以多种波长的光线观察太阳,研究人员也可以使用该算法来比较不同波长的特定结构,并加强其评估,”NASA说。“开始时,他们将通过向算法展示AIA所有波长的太阳耀斑来教它太阳耀斑的样子,直到它识别所有不同类型光线中的太阳耀斑。一旦程序能够在没有任何退化的情况下识别太阳耀斑,该算法就可以确定有多少退化在影响AIA当前的图像,以及每个图像需要多少校准。”
将机器学习的预测结果与火箭发射的实际校准结果进行核对,结果发现人工智能恰到好处。现在,AIA团队计划使用训练有素的算法,在未来的火箭飞行之间更好地调整仪器的变化。
相关文章
- 智汇瓯江 智引未来:2025中国人工智能数字创新大会在温州成功举办
- 苹果人工智能服务器芯片Baltra或将用于执行人工智能推理任务
- 人工智能数据处理和质量测评中心全栈服务体系正式发布
- 中国开发区协会人工智能产业专业委员会在京成立
- 中国信通院政策与经济研究所李强治:我国人工智能治理迈入务实新阶段,场景与工具同步落地
- 中国信通院产业与规划研究所张桢:人工智能与城市全域数字化转型融合,正成为推动城市高质量发展的核心引擎
- 中国信通院产业与规划研究所徐志发:人工智能驱动数字消费深度变革,“十五五”时期将进入壮大发展的关键阶段
- 中国信通院云计算与大数据研究所栗蔚:智能算力重塑计算和网络架构,普惠化服务人工智能
- 中国信通院信息化与工业化融合研究所刘默:人工智能技术创新赋能制造业智能化迈入新阶段
- 中国信通院人工智能研究所魏凯:人工智能正从工具升级为伙伴,全面赋能高质量发展
- 中国心理科技园开园暨中国心理人工智能算力中心在京成立 心理产业迈入2.0时代:“心理AI产教融合生态”
- 蘑菇云荣膺教育强国论坛2025年度科技创新教育品牌 以创新产品赋能人工智能通识教育
- 英伟达在AI图形处理器上部署训练OpenAI的GPT-5.2,为人工智能产业提速
- 2025 全国人工智能应用场景创新挑战赛AI Agent全球专项赛线下半决赛新闻发布会在深圳召开
- 美图公司RoboNeo入选2025人工智能年度榜单
- 贵港移动公司共建人工智能联合实验室,推动产学研融合与产业数字化









