NASA利用人工智能对其太阳动力学天文台进行“视力测试”
2021-07-24 09:53:28爱云资讯537
据外媒报道,美国宇航局(NASA)的太阳动力学天文台(SDO)有一些巧妙的方法来避免受到太阳的影响,因为该航天局收集了关于我们最近的恒星的重要信息。太阳动力学天文台已经工作了十多年,揭开了关于太阳中强大力量的前所未有的细节,但新的人工智能技术正在确保其“太阳视力”是正常的。
SDO由两个主要的成像仪器组成,即太阳地震和磁成像仪(HMI)和大气成像组件(AIA)。后者对太阳的表面进行持续的“注视”,每12秒捕捉一次10个波长的紫外光的镜头。
AIA可能比人的眼睛更有“弹性”--盯着太阳看对人们的眼睛造成的损害,即所谓的日光性视网膜病变,可能在两分钟内发生--但随着时间的推移,它仍然受到巨大能量输出的影响。"随着时间的推移,太阳望远镜的敏感镜片和传感器开始退化,"NASA解释说。"为了确保这种仪器发回的数据仍然是准确的,科学家们定期进行重新校准,以确保他们了解仪器是如何变化的。"
到目前为止,SDO的这一目测依靠的是探空火箭。这些火箭的设计寿命很短,它们飞出地球的大部分大气层--这有助于保护我们免受大部分紫外线的伤害--然后测量那里的水平。然后与AIA的测量结果进行比较,然后对数据进行调整以适应仪器的退化。上图左边是AIA的原始数据,右边是使用探空火箭校准的处理版本。
NASA解释说,问题是不可能一直发送探空火箭。该机构解释说:“这意味着在每次探空火箭校准之间会有停机时间,校准会有轻微偏差。同时,展望未来,深空任务也将需要观察有潜力的恒星,但将不能使用探空火箭进行校准。”
周五的一篇新论文中详细介绍了解决办法,那就是机器学习。通过在探空火箭校准飞行的现有图像上训练人工智能算法,并告诉它什么是正确的校准量,该系统可以学习应用多少。
在上面的图片中,上面一行显示的是AIA在开始观测以来的几年中捕获的原始数据。下行显示的是经过新的机器学习算法处理后的数据。
“由于AIA以多种波长的光线观察太阳,研究人员也可以使用该算法来比较不同波长的特定结构,并加强其评估,”NASA说。“开始时,他们将通过向算法展示AIA所有波长的太阳耀斑来教它太阳耀斑的样子,直到它识别所有不同类型光线中的太阳耀斑。一旦程序能够在没有任何退化的情况下识别太阳耀斑,该算法就可以确定有多少退化在影响AIA当前的图像,以及每个图像需要多少校准。”
将机器学习的预测结果与火箭发射的实际校准结果进行核对,结果发现人工智能恰到好处。现在,AIA团队计划使用训练有素的算法,在未来的火箭飞行之间更好地调整仪器的变化。
相关文章
- 人工智能搜索引擎Perplexity的AI语音助手已登陆iOS平台
- 学而思素养携手中国青少年宫协会 开启人工智能科普公益行
- 中国软件行业协会NCT编程考级2025年4月考圆满收官,新增人工智能教育测评体系
- 更能算、更省钱、更懂化工的国产人工智能来了!
- 2025“人工智能+”产业发展大会:开启智能产业新时代
- 云南联通科技创新暨人工智能合作发展大会在昆启幕:科技赋能边疆,智启数字云南新篇章
- 人民出行受邀见证中国-东盟人工智能创新合作中心签约 共启广西智能产业新篇章
- AI赋能,数智创新,慧博云通闪耀2025日本人工智能展览会
- 维基百科将发布专用于训练人工智能模型的数据集,以抵御网络爬虫抓取
- 培生发布智能课程生成器:创新人工智能驱动教师备课方式变革
- OpenAI发布全新人工智能模型o3和o4-mini,首次实现图像思考
- 深度迈进人工智能新纪元,标普云正式更名标普智元
- Meta AI宣布即将使用欧盟用户数据训练人工智能模型
- 英伟达宣布在台积电亚利桑那州工厂投产Blackwell人工智能芯片
- 九章云极DataCanvas入选2025全国企业“人工智能+”行动创新案例TOP100
- 云知声受邀参加2025中国数字经济产业发展大会,携手多方共筑苏州人工智能战略生态