数据和算法 深藏导航背后的AI技术
2018-11-20 16:57:22爱云资讯1234
当前,AI浪潮势不可挡,在无数大众最熟悉的生活场景中,其实蕴含着许多未被发现的秘密。这些“深藏功与名”的AI技术,在最基础的功能背后,却演绎着数据和算法最动人的一面。
这一点,在刚需的日常应用地图导航有很好的体现,算法与千变万化的道路信息之间的“斗智斗勇”,如何对地图中常规的路线规划进行改造,让“未来出行”成为可能。
日常生活中,我们认为所谓的路线规划就是“两点之间直线最短”,但现实情况可能会让你直接掉到河里去。 当前的地图产品在为用户规划路线时,那可是一场人类与复杂算法、道路信息之间的斗智斗勇。地图导航的算法不仅要面对瞬息万变的路况信息,还要应对各种各样“意料之外情理之中”的干扰。所以如何综合利用好各类信息,快速提供准确有效的出行方案,就成了“路线规划”要解决的切实问题。
当然,用户最关心的还是如何解决问题。
为应对这一用户的刚性需求,全面拥抱AI的百度地图则是通过预估未来交通状况并提供躲避拥堵、限行路线的方式,以简单的四步满足用户智能化出行需求的,成了受欢迎的新趋势。
首先是针对时间规划路线,为了实现根据时间推演进行路线规划,常用做法是将连续的时间点分散成多个时刻,在每一个时刻都生成一套权值,并在路线搜索过程中恰当切换不同权值,从而实现针对时间进行路线规划。在算法选择上,一般要考虑预处理时间、在线计算性能、路线效果等要素;接下来就是要基于海量数据合理预测,这也是算法进行后续决策的基础,算法可以根据历史数据和当前道路状态合理预测,从而保障路线规划的准确和智能;第三就是要借助通行规范筛选路线,主要结合预计到达时间和用户车牌号,通过限行、交规、封路等通行规范,筛选出符合车辆需求的合理路线。导航地图在路线筛选环节已经做到了秒级生效,而利用精准的预计到达时间,则能为用户提供更多选择;最后就是要以“为用户着想”的路线排序,这就需要引入对未来路线状态的判断,但随之也带来了新的难题,如何应对限行等各种突发情况。导航地图一方面通过“常规路线”,即大部分用户选择的路线或用户自身曾走过的路线,过滤掉没有意义的绕行,此外还要通过衡量不同路线的代价综合筛选,通过用户以往的驾驶行为和操作偏好,推荐更适合路线。而当路上遇到突发情况导致预计到达时间不准,可能引起用户违章时,算法往往会做“最坏的假设”。
在这场算法跟道路信息之间的斗智斗勇中,导航地图不仅能处理好纷繁复杂的各类信息,还能让它们“为我所用”,以这些信息为指标提供最优的出行选择。当“未来时刻”成为用户越来越重视的核心要素之一,更智能化的导航规划也将成为未来趋势。相关文章
- 从防火墙到零信任 保障关键OT数据安全进入信任计算时代
- 突破!联通可信密算平台:国产化信创环境下打造数据密态计算新引擎
- KAWO发布2025 B2B社媒营销白皮书:数据驱动与AI协同成破局关键
- 汇付支付斗拱解决方案全新升级:业财数据通、手搓变自动、分账快又准
- 富士胶片(中国)举行LTO 10数据流磁带发布会 75TB大容量亮相
- 贝锐蒲公英全球智能链路,助力电力数据跨区流畅传输
- 从数据到决策:解析B2B外贸企业如何用AI实现营销破圈
- 极氪与火山引擎深化合作,Data Agent赋能车辆数据管理效率
- 工业富联半年报:这项数据或预示着“好戏”还在后头
- 品牌出海新引擎!玩美数据以跨文化洞察重塑零售市场竞争力
- 共铸高质量 智赢高价值 | 国家卫星气象中心风云三号数据中心样板点正式发布
- 数据重建异常耗时 深信服EDS存储通过创新技术提升可靠性
- WAIC重磅发布|极光月狐数据联合中国信息协会发布全球AI Agent报告
- 中国数据库市场格局生变,国产厂商加速核心领域突围
- 火山引擎Data Agent:突破传统BI局限,用智能对话打造“数据决策大脑“
- 共筑AI生态沃土:以开放协同释放智能时代数据价值