数据和算法 深藏导航背后的AI技术
2018-11-20 16:57:22爱云资讯1143
当前,AI浪潮势不可挡,在无数大众最熟悉的生活场景中,其实蕴含着许多未被发现的秘密。这些“深藏功与名”的AI技术,在最基础的功能背后,却演绎着数据和算法最动人的一面。
这一点,在刚需的日常应用地图导航有很好的体现,算法与千变万化的道路信息之间的“斗智斗勇”,如何对地图中常规的路线规划进行改造,让“未来出行”成为可能。
日常生活中,我们认为所谓的路线规划就是“两点之间直线最短”,但现实情况可能会让你直接掉到河里去。 当前的地图产品在为用户规划路线时,那可是一场人类与复杂算法、道路信息之间的斗智斗勇。地图导航的算法不仅要面对瞬息万变的路况信息,还要应对各种各样“意料之外情理之中”的干扰。所以如何综合利用好各类信息,快速提供准确有效的出行方案,就成了“路线规划”要解决的切实问题。
当然,用户最关心的还是如何解决问题。
为应对这一用户的刚性需求,全面拥抱AI的百度地图则是通过预估未来交通状况并提供躲避拥堵、限行路线的方式,以简单的四步满足用户智能化出行需求的,成了受欢迎的新趋势。
首先是针对时间规划路线,为了实现根据时间推演进行路线规划,常用做法是将连续的时间点分散成多个时刻,在每一个时刻都生成一套权值,并在路线搜索过程中恰当切换不同权值,从而实现针对时间进行路线规划。在算法选择上,一般要考虑预处理时间、在线计算性能、路线效果等要素;接下来就是要基于海量数据合理预测,这也是算法进行后续决策的基础,算法可以根据历史数据和当前道路状态合理预测,从而保障路线规划的准确和智能;第三就是要借助通行规范筛选路线,主要结合预计到达时间和用户车牌号,通过限行、交规、封路等通行规范,筛选出符合车辆需求的合理路线。导航地图在路线筛选环节已经做到了秒级生效,而利用精准的预计到达时间,则能为用户提供更多选择;最后就是要以“为用户着想”的路线排序,这就需要引入对未来路线状态的判断,但随之也带来了新的难题,如何应对限行等各种突发情况。导航地图一方面通过“常规路线”,即大部分用户选择的路线或用户自身曾走过的路线,过滤掉没有意义的绕行,此外还要通过衡量不同路线的代价综合筛选,通过用户以往的驾驶行为和操作偏好,推荐更适合路线。而当路上遇到突发情况导致预计到达时间不准,可能引起用户违章时,算法往往会做“最坏的假设”。
在这场算法跟道路信息之间的斗智斗勇中,导航地图不仅能处理好纷繁复杂的各类信息,还能让它们“为我所用”,以这些信息为指标提供最优的出行选择。当“未来时刻”成为用户越来越重视的核心要素之一,更智能化的导航规划也将成为未来趋势。相关文章
- 金仓数据库:深耕民生领域 赋能数字化转型新征程
- AI时代,数据觉醒 | 华为发布AI数据湖解决方案,加速行业智能化
- MAXHUB亮相数字中国建设峰会:AI重构会议体验,数据驱动企业决策
- 中国移动发布梧桐大数据“AI+DATA”系列创新成果
- 金仓数据库:三轮驱动,赋能数字中国高质量发展
- 启信宝荣获2024年上海市电信和互联网行业数据要素流通标杆案例
- 金仓数据库:在网信领域持续打造有竞争力的产业生态
- 释放数据要素潜能,共赴2025数据安全发展大会
- 慧科讯业AI赋能数据标签化,破局多模态数据治理难题
- 合思冯子瑜:电子会计档案+AI,让数据释放更多价值
- 金蝶信科王宏:AI重塑小微信贷流程 数据“替企业说真话”
- 刘东:以标准推进国际数据流通 助力人工智能产业创新发展
- 戴尔智能冷却:以创新技术引领数据中心绿色革命
- 中国人形机器人生态大会丨虚拟动点破解具身智能“数据”难题
- 2025 IT市场权威榜单丨科华数据连续五年获评新一代信息技术领军企业
- 以劳动丈量价值 用实干筑牢根基——远大铝业发布一线工人薪酬增长数据,诠释实业报国担当