通过量子、神经形态和高性能计算可实现更优越的人工智能
2021-07-27 10:42:40AI云资讯1217
当前时代的AI和深度学习存在一些缺点,例如训练深度网络可能非常耗时,云计算可能成本高昂,并且无法获得足够的数据也可能是一个问题。为了摆脱这些,科学家们都在寻找更智能的人工智能版本,未来他们似乎可以通过三种方式取得进展。
高性能计算(HPC)
在改进人工智能的过程中,最关注的是高性能计算。它基于深度神经网络,但旨在使它们更快、更容易访问。它旨在提供更好的通用环境,如TensorFlow,并在越来越大的数据中心中更好地利用GPU和FPGA,并有望在不远的地方推出更专业的芯片。这里的关键驱动因素至少解决了三个进步障碍中的两个。这些改进将使编程变得更快更容易,以获得更可靠的良好结果,尤其是更快的芯片应该使原始机器的计算时间更短。拥有一台高性能计算机的意义在于,各个节点可以协同工作来解决比任何一台计算机都无法轻松解决的问题。而且,就像人一样,节点需要能够相互交谈才能有意义地协同工作。当然,计算机通过网络相互通信,并且有多种计算机网络(或互连)选项可用于业务集群。
神经形态计算
神经形态计算最初是为了使用模拟电路来模仿大脑中发现的突触结构。大脑擅长从噪音和学习中挑选出模式。神经形态CPU擅长处理离散、清晰的数据。许多人相信神经拟态计算可以解锁应用程序并解决几十年来阻碍传统计算系统的大规模问题。2008 年,美国国防高级研究计划局(DARPA)启动了一项名为“神经形态自适应塑料可扩展电子系统”(SyNAPSE)的计划,“开发可扩展到生物水平的低功耗电子神经形态计算机。” 该项目的第一阶段是开发纳米级突触,模拟大脑中的突触活动,但将在基于微电路的架构中发挥作用。
量子计算
在量子计算中,操作改为使用对象的量子状态来产生所谓的量子位。这些状态是物体在被检测到之前的未定义属性,例如电子的自旋或光子的极化。未测量的量子态没有明确的位置,而是以混合的“叠加”形式出现,就像硬币在着陆前在空中旋转一样。这些叠加可以与其他物体的叠加纠缠在一起,这意味着即使它们未知,它们的最终结果也会在数学上相关。量子位可以表示1和0的多种可能组合同时。这种同时处于多种状态的能力称为叠加。为了将量子位叠加,研究人员使用精密激光或微波束来操纵它们。在这种违反直觉的现象的帮助下,具有多个量子位叠加的量子计算机可以同时处理大量潜在结果。计算的最终结果只有在量子位被测量后才会出现,这会立即导致它们的量子状态“崩溃”为1或0。
相关文章
- 智汇瓯江 智引未来:2025中国人工智能数字创新大会在温州成功举办
- 苹果人工智能服务器芯片Baltra或将用于执行人工智能推理任务
- 人工智能数据处理和质量测评中心全栈服务体系正式发布
- 中国开发区协会人工智能产业专业委员会在京成立
- 中国信通院政策与经济研究所李强治:我国人工智能治理迈入务实新阶段,场景与工具同步落地
- 中国信通院产业与规划研究所张桢:人工智能与城市全域数字化转型融合,正成为推动城市高质量发展的核心引擎
- 中国信通院产业与规划研究所徐志发:人工智能驱动数字消费深度变革,“十五五”时期将进入壮大发展的关键阶段
- 中国信通院云计算与大数据研究所栗蔚:智能算力重塑计算和网络架构,普惠化服务人工智能
- 中国信通院信息化与工业化融合研究所刘默:人工智能技术创新赋能制造业智能化迈入新阶段
- 中国信通院人工智能研究所魏凯:人工智能正从工具升级为伙伴,全面赋能高质量发展
- 中国心理科技园开园暨中国心理人工智能算力中心在京成立 心理产业迈入2.0时代:“心理AI产教融合生态”
- 蘑菇云荣膺教育强国论坛2025年度科技创新教育品牌 以创新产品赋能人工智能通识教育
- 英伟达在AI图形处理器上部署训练OpenAI的GPT-5.2,为人工智能产业提速
- 2025 全国人工智能应用场景创新挑战赛AI Agent全球专项赛线下半决赛新闻发布会在深圳召开
- 美图公司RoboNeo入选2025人工智能年度榜单
- 贵港移动公司共建人工智能联合实验室,推动产学研融合与产业数字化









